
REG, REG1, REG2, ... 
Rn, Rn1, Rn2, ... 

Rn.tx  
Cn, Cn1, Cn2, ... 

A field that must be b0 to b3
A valid label
An immediate value from 0 to n
Operand - either a REG or IM(n)

A register field from 8 to 32 bits
A 32-bit register field (r0 to r31)
A 1-bit register field
A 32-bit constant constant register (c0 to c31)

bn
LABEL

IM(n)
OP(n)

Arithmetic Operations
Short Description: Definition: Full Description:

ADD Unsigned integer add ADD REG1, REG2, OP(255) Performs 32-bit add on two 32-bit zero extended source values

ADC Unsigned integer add (carry) ADC REG1, REG2, OP(255) Performs 32-bit add on two 32-bit zero extended source values, plus a stored carry bit

SUB Unsigned integer subtract SUB REG1, REG2, OP(255) Performs 32-bit subtract on two 32-bit zero extended source values

SUC Unsigned integer subtract (carry) SUC REG1, REG2, OP(255) Performs 32-bit subtract on two 32-bit zero extended source values with carry (borrow)

RSB Reverse unsigned int subtract RSB REG1, REG2, OP(255) Performs 32-bit subtract on two 32-bit zero extended source values. Source values reversed

RSC Reverse unsigned integer 
subtract (carry)

RSC REG1, REG2, OP(255) Performs 32-bit subtract on two 32-bit zero extended source values with carry (borrow). 
Source values reversed

Logical Operations
LSL Logical shift left LSL REG1, REG2, OP(31) Performs 32-bit shift left of the zero extended source value

LSR Logical shift right LSR REG1, REG2, OP(31) Performs 32-bit shift right of the zero extended source value

AND Bitwise AND AND REG1, REG2, OP(255) Performs 32-bit logical AND on two 32-bit zero extended source values

OR Bitwise OR OR REG1, REG2, OP(255) Performs 32-bit logical OR on two 32-bit zero extended source values

XOR Bitwise XOR XOR REG1, REG2, OP(255) Performs 32-bit logical XOR on two 32-bit zero extended source values

NOT Bitwise NOT NOT REG1, REG2 Performs 32-bit logical NOT on the 32-bit zero extended source value

MIN Copy minimum MIN REG1, REG2, OP(255) Compares two 32-bit zero extended source values and copies the smaller to REG1

MAX Copy maximum MAX REG1, REG2, OP(255) Compares two 32-bit zero extended source values and copies the larger to REG1

CLR Clear bit CLR REG1, REG2, OP(31) Clears the specified bit in the source and copies the result to the destination
Also:      CLR REG1, OP(31)       CLR REG1, Rn.tx       CLR Rn.tx

SET Set bit SET REG1, REG2, OP(31) Sets the specified bit in the source and copies the result to the destination
Also:      SET REG1, OP(31)       SET REG1, Rn.tx        SET Rn.tx

SCAN Register field scan SCAN Rn, OP(255) The SCAN instruction scans the register file for a particular value. It includes a configurable 
field width and stride. The width of the field to match can be set to 1, 2, or 4 bytes.

LMBD Left-most bit detect LMBD REG1, REG2, OP(255) Scans REG2 from its left-most bit for a bit value matching bit 0 of OP(255), and writes the bit 
number in REG1 (writes 32 to REG1 if the bit is not found)

Register Load and Store
MOV Copy value MOV REG1, OP(65535) Moves the value from OP(65535), zero extends it, and stores it into REG1

LDI Load immediate LDI REG1, IM(65535) The LDI instruction moves value from IM(65535), zero extends it, and stores it into REG1

MVIB Move register file indirect (8) MVIB [*&]REG1, [*&]REG2
MVIW Move register file indirect (16) MVIW [*&]REG1, [*&]REG2
MVID Move register file indirect (32) VID [*&]REG1, [*&]REG2
LBBO Load byte burst LBBO REG1, Rn2, OP(255), IM(124) 

LBBO REG1, Rn2, OP(255), bn
The LBBO instruction is used to read a block of data from memory into the register file. The 
memory address to read from is specified by a 32-bit register, using an optional offset

SBBO Store byte burst SBBO REG1, Rn2, OP(255), IM(124)
SBBO REG1, Rn2, OP(255), bn

The SBBO instruction is used to write a block of data from the register file into memory. The 
memory address to which to write is specified by a 32-bit register, using an optional offset

LBCO Load byte burst 
with constant table offset

LBCO REG1, Cn2, OP(255), IM(124)
LBCO REG1, Cn2, OP(255), bn

The LBCO instruction is used to read a block of data from memory into the register file. The 
memory address from which to read is specified by a 32-bit constant register (Cn2), using an 
optional offset from an immediate or register value

SBCO Store byte burst 
with constant table offset

SBCO REG1, Cn2, OP(255), IM(124)
SBCO REG1, Cn2, OP(255), bn

The SBCO instruction is used to write a block of data from the register file into memory. The 
memory address to write to is specified by a 32-bit constant register (Cn2), using an optional 
offset from an immediate or register value

ZERO Clear register space ZERO IM(123), IM(124) This pseudo-op is used to clear space in the register file. Also:    ZERO &REG1, IM(124) 

Program Flow Control
JMP Unconditional jump JMP OP(65535) Unconditional jump to a 16-bit instruction address, specified by register or immediate value

JAL Unconditional jump and link JAL REG1, OP(65535) Unconditional jump to a 16-bit instruction address, specified by register or immediate value. 
Address following the JAL instruction is stored into REG1, so that REG1 can later be used as 
a "return" address

CALL Call procedure CALL OP(65535) The CALL instruction is designed to emulate a subroutine call on a stack-based processor

RET Return from procedure RET The RET instruction is designed to emulate a subroutine return on a stack-based processor

QBGT Quick branch if > QBGT LABEL, REG1, OP(255) Jumps if the value of OP(255) is greater than REG1

QBGE Quick branch if  QBGE LABEL, REG1, OP(255) Jumps if the value of OP(255) is greater than or equal to REG1

QBLT Quick branch if < QBLT LABEL, REG1, OP(255) Jumps if the value of OP(255) is less than REG1

QBLE Quick branch if  QBLE LABEL, REG1, OP(255) Jumps if the value of OP(255) is less than or equal to REG1

QBEQ Quick branch if = QBEQ LABEL, REG1, OP(255) Jumps if the value of OP(255) is equal to REG1

QBNE Quick branch if  QBNE LABEL, REG1, OP(255) Jumps if the value of OP(255) is NOT equal to REG1

QBA Quick branch always QBA LABEL Jump always. This is similar to the JMP instruction, only QBA uses an address offset and 
thus can be relocated in memory

QBBS Quick branch if bit is set QBBS LABEL, REG1, OP(31) Jumps if the bit OP(31) is set in REG1. Also:       QBBS LABEL, Rn.tx

QBBC Quick branch if bit is clear QBBC LABEL, REG1, OP(31) Jumps if the bit OP(31) is clear in REG1. Also:           QBBC LABEL, Rn.tx

WBS Wait until bit set WBS REG1, OP(31)
WBS Rn.tx

The WBS instruction is a pseudo op that uses the QBBC instruction. It is used to poll on a 
status bit, spinning until the bit is set

WBC Wait until bit clear WBC REG1, OP(31)
WBC Rn.tx

The WBC instruction is a pseudo op that uses the QBBS instruction. It is used to poll on a 
status bit, spinning until the bit is clear

HALT Halt operation HALT The HALT instruction disables the PRU. This instruction is used to implement software 
breakpoints in a debugger

SLP Sleep operation SLP IM(1) The SLP instruction will sleep the PRU, causing it to disable its clock. This instruction can 
specify either a permanent sleep or a "wake on event"

See: http://processors.wiki.ti.com/index.php/PRU_Assembly_Instructions for further information.     

The MVIx instruction family moves a value from the source to the destination. The source, 
destination, or both can be register pointers.

EXPLORINGBEAGLEBONE
TOOLS AND TECHNIQUES FOR BUILDING WITH EMBEDDED LINUX

www.ExploringBeagleBone.comSummary of the PRU instruction set 


